Sulfated glycosaminoglycans mediate prion-like behavior of p53 aggregates
نویسندگان
چکیده
منابع مشابه
Mutant p53 Aggregates into Prion-like Amyloid Oligomers and Fibrils
Over 50% of all human cancers lose p53 function. To evaluate the role of aggregation in cancer, we asked whether wild-type (WT) p53 and the hot-spot mutant R248Q could aggregate as amyloids under physiological conditions and whether the mutant could seed aggregation of the wild-type form. The central domains (p53C) of both constructs aggregated into a mixture of oligomers and fibrils. R248Q had...
متن کاملInteraction of sulfated glycosaminoglycans with lectins.
The sulfated glycosaminoglycans, such as keratan sulfate and chitin sulfate having 3-hydroxy free N-acetyl-beta-D-glucosaminyl residues as constituents, reacted with wheat germ agglutinin and Solanum tuberosum agglutinin by sugar-specific interaction. The glycosaminoglycans showed different inhibitory activities to the hemagglutination reaction of these lectins and keratan sulfate and its modif...
متن کاملSulfated glycosaminoglycans from ovary of Rhodnius prolixus.
We have characterized sulfated glycosaminoglycans from ovaries of the blood-sucking insect Rhodnius prolixus, and determined parameters of their synthesis and distribution within this organ by biochemical and histochemical procedures. The major sulfated glycosaminoglycan is heparan sulfate while chondroitin 4-sulfate is a minor component. These glycosaminoglycans are concentrated in the ovarian...
متن کاملPrion-like spread of protein aggregates in neurodegeneration
Protein misfolding is common to most neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Recent work using animal models with intracellular α-synuclein and tau inclusions adds decisively to a growing body of evidence that misfolded protein aggregates can induce a self-perpetuating process that leads to amplification and spreading of pathological protein assemblies. When ...
متن کاملPrion-Like Protein Aggregates and Type 2 Diabetes.
Type 2 diabetes (T2D) is a highly prevalent metabolic disease characterized by chronic insulin resistance and β-cell dysfunction and loss, leading to impaired insulin release and hyperglycemia. Although the mechanism responsible for β-cell dysfunction and death is not completely understood, recent findings suggest that the accumulation of misfolded aggregates of the islet amyloid polypeptide (I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2020
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.2009931117